Return to the he3lib page...

Other B-phase textural parameters

Formulas are given according to Thuneberg's paper JLTP 122, p657 (2001). High order Fermi liquid parameters ($F_2^a$, $F_3^a$) are neglected.

See also the source file: he3_text.f.

Examples

Library functions

he3_text_a(ttc,p) Parameter $a$, [erg/(cm$^3$ G$^{2})$] in the magneto-dipolar energy:
$\displaystyle F_{DH} = -a \int_V ({\bf n} \cdot {\bf H})^2\ d^3r$
$\displaystyle a = \frac{5 g_d}{2} \left[\frac{\hbar \gamma / 2}{1 + F_0^a (2+Y_0)/3}\right]^2 \left(5-3\frac{Z_3}{Z_5}\right)$.

he3_text_d(ttc,p) Parameter $d$, [erg/(cm$^2$ G$^2$)] in the magneto-surface energy:
$\displaystyle F_{SH} = -d \int_S [{\bf H} \cdot R \cdot {\bf s} ]^2\ d^2r$
Note: Ginsburg-Landau extrapolation of $\xi_0$ is used!

he3_text_ldv(ttc,p) Parameter $\lambda_{DV}$, [erg/cm$^3$ (cm/s)$^{-2}$] in the dipole-counterflow energy:
$\displaystyle F_{DV} = -\lambda_{DV} \int_V [{\bf n} \cdot ({\bf v_s}-{\bf v_n}) ]^2\ d^3r$,
$\displaystyle \lambda_{DV} = 5 g_d \left( \frac{m^* v_F}{1 + F_1^s Y_0/3} \right)^2 \left( 1 - \frac{3 Z_5}{2 Z_3} \right)$.
Note: this term is $\ll F_{HV}$ in our usual magnetic fields. $H\approx200$ G.

he3_text_lhv(ttc,p) Parameter $\lambda_{HV}$ in the magneto-counterflow energy:
$\displaystyle F_{HV} = -\lambda_{HV} \int_V [{\bf H} \cdot R \cdot ({\bf v_s}-{\bf v_n}) ]^2\ d^3r$,
$\displaystyle \lambda_{HV} = \frac{\rho}{\Delta^2} \frac{1 + F_1^s / 3}{(1 + F_1^s Y_0/3)^2} \left( \frac{\hbar\gamma/2}{ 1 + F_0^a (2 + Y_0)/3)} \right)^2 \left( Z_3 - \frac{9}{10} Z_5 + \frac{9}{10}\ \frac{Z_5^2}{Z_3} - \frac32 Z_7 \right).$

he3_text_llh(ttc,p,omega) Parameter $\lambda_{LH}$, [erg/(cm$^3$ G$^2$ s)] in the vortex orientation energy.
This is counterflow part only, at low temperatures other effects are much larger!
$\displaystyle F_{LH} = \frac{\lambda_{LH}}{2\Omega} \int_L |\omega_s| [{\bf H} \cdot R \cdot {\bf l} ]^2\ d^3r$
$\displaystyle \lambda_{LH} = \frac{\hbar}{2m}\Omega \lambda_{HV} \left(\ln\frac{R}{r} - \frac34\right)$.

Derived values

he3_text_lo(ttc,p,omega) Parameter $\lambda/\Omega$, [1/(rad/s)] used in the texture library:
$\displaystyle \frac{\lambda}{\Omega} = \frac{5\lambda_{LH}}{2a\Omega}$.
This is counterflow part only, at low temperatures other effects are much larger!

he3_text_xih(ttc,p,h) Magnetic length $\xi_H = \sqrt{65\lambda_{G2}/(8 a H^2)}$, [cm]
he3_text_xid(ttc,p) Dipolar length (according to Hakonen-1989). $\xi_D = \sqrt{13\lambda_{G2}/12\lambda_D}$, [cm].
Note: in Thuneberg's paper $\xi_D = \sqrt{\lambda_{G2}/\lambda_D}$ is used.
he3_text_vd(ttc, p) Dipolar velocity (according to Thuneberg-2001), $v_D = \sqrt{2a/5\lambda_{HV}}$